UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Klasifikasi Gangguan Depresi Menggunakan Elektroensefalografi (EEG) dan Feedforward Neural Network (FNN) = Depressive Disorder Classification Using Electroencephalography (EEG) and Feedforward Neural Network (FNN)

Ratna Aditya Apsari; Sastra Kusuma Wijaya, supervisor; Arief Sudarmaji, examiner; Prawito, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

Meningkatnya angka prevalensi gangguan depresi, terutama di generasi muda, membawa urgensi tentang pentingnya menjaga kesehatan mental. Terlebih lagi, adanya gangguan depresi pada seseorang telah terbukti untuk meningkatkan risiko dan keparahan (severity) penyakit kardiovaskular. Seringkali, depresi luput atau salah didiagnosis sebagai penyakit lain, karena gejala-gejalanya yang mirip dengan penyakit non-mental lainnya. Karena itu, kebutuhan untuk membuat suatu sistem berbasis sinyal elektroensefalografi (EEG) yang dapat membantu diagnosis gangguan mental ini menjadi semakin penting. Tujuan penelitian ini adalah membuat program analisis spektral dan klasifikasi sinyal EEG untuk membantu diagnosis gangguan depresi yang berbasis Machine Learning. Untuk melengkapinya, dibuat juga aplikasi MATLAB dengan Graphical User Interface agar mempermudah pengguna. Sinyal EEG diproses menggunakan dua metode, yaitu wavelet dan Power Spectral Density (PSD). Relative Power Ratio dan Average Alpha Asymmetry dihitung sebagai fitur klasifikasi. Untuk mereduksi jumlah fitur, dilakukan perhitungan dominansi. Fitur akan diurutkan sesuai dominansinya, sehingga fitur dengan dominansi tertinggi akan digunakan untuk klasifikasi Machine Learning. Pengklasifikasi yang digunakan adalah feedforward neural network dengan cross validation. Hasil akurasi tertinggi yang dicapai adalah 83,6% menggunakan metode wavelet dan 77,5% menggunakan metode PSD. Selain itu, di bagian Frontal dan Parietal subyek depresi, ditemukan aktivitas alfa bagian otak kanan yang lebih dominan. Hal tersebut konsisten dengan penemuan dari riset-riset sebelumnya yang menunjukkan bahwa subyek depresi memiliki asimetri aktivitas otak yang dominan di bagian kanan.


The increasing prevalence of depressive disorder (also known as major depressive disorder or MDD), especially in the younger generations, has brought urgency upon the importance of keeping good mental health. Moreover, depression has proven to increase risks of cardiovascular diseases, along with their severities. Depressive disorders are oftentimes not diagnosed or misdiagnosed, because some of the symptoms are similar with those of other non-mental illnesses. Because of that, the necessity to build a system based on electroencephalographic (EEG) signals that could help diagnose this mental illness has been increasing in importance. The goal of this research is to make a Machine Learning-based classification program that implements EEG spectral analysis to aid for the diagnostics of depression. A MATLAB application with a Graphical User Interface was made as an addition to the program so that users can operate it easily. EEG signals were processed using two different signal processing methods, which are wavelet and Power Spectral Density (PSD). Relative Power Ratio and Average Alpha Asymmetry were calculated for feature extraction. As a feature-reducing method, feature dominance was calculated and ranked so that the highest ranked features will be used as input for the Machine Learning classification. The classifier used was feedforward neural network with cross validation. The highest achieved results were 83,6% accuracy using the wavelet method and 77,5% accuracy using the PSD method. Other than that, depressed subjects also showed a dominant right-hemisphere alpha activity in the Frontal and Parietal region, which is consistent with previous research that reveals the right-dominated asymmetry in the depressed brain.

 File Digital: 1

Shelf
 S-pdf-Ratna Aditya Apsari.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xviii, 111 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-21-992371472 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20508762
Cover