Pergerakan respirasi saat
treatment radioterapi tumor dalam toraks seperti pada kasus
Non-small Cell Lung Cancer (NSCLC) merupakan salah satu hal yang perlu dipertimbangkan dalam keakurasian dosis. Pergerakan tersebut menghasilkan ketidakpastian posisi target pada saat
treatment radiasi yang dapat mengakibatkan adanya kekurangan dosis akibat adanya
dose blurring dan
interplay effect. Penelitian terdahulu membuktikan bahwa penambahan margin internal pada PTV dapat mengurangi perbedaan dosis perencanaan dengan dosis terukur. Penelitian ini bertujuan untuk mempelajari pengaruh metode optimasi robust yang memperhitungkan ketidakpastian posisi relatif terhadap volume target dalam perencanaan radioterapi dan perbandingannya dengan metode konvensional yang dilakukan pada fantom toraks dinamik
in-house. Penggunaan metode ini meningkatkan nilai konformitas dosis pada teknik IMRT dan VMAT, meningkatkan uniformitas dosis pada teknik VMAT, namun mengurangi kecuraman dosis
fall-off perencanaan. Metode ini meningkatkan nilai dosis target pada perencanaan IMRT konvensional dari rerata 199,63 cGy menjadi 200,43; 206,26; dan 204,20 cGy untuk ketidakpastian 5 mm, 10 mm, dan 15 mm, tetapi menurunkan dosis target pada perencanaan VMAT konvensional dari rerata 201,59 cGy menjadi 198,84; 199,05; dan 199,06 cGy untuk ketidakpastian 5 mm, 10 mm, dan 15 mm. Metode ini juga meningkatkan dosis OAR di area terdekat target dan menurunkan dosis di area lainnya pada teknik IMRT, namun hampir seluruh area OAR mendapatkan peningkatan dosis pada teknik VMAT.
Respiration movement, when treating radiotherapy to the tumor in the thorax, such in the case of NSCLC, is one of the challenges of dose accuracy. The target movement during radiation treatment causes dose blurring and interplay effects. A previous study proved that internal margins on PTV reduce the differences between plan and measured doses. This study aims to observe the effect of robust optimization, which provide uncertainty of target volume position on photon planning. We compared the robust with a conventional method on the in-house thorax dynamic phantom. This method enhanced the dose conformity index in the IMRT and VMAT techniques and the dose uniformity in the VMAT technique. However, robust planning reduces the steepness of the dose in both IMRT and VMAT. The average target dose of IMRT technique was increased from 199.63 cGy in conventional planning to 200.43; 206.26; and 204.20 cGy for planning with an uncertainty of 5 mm, 10 mm and 15 mm. On the other hand, the average target dose was reduced from 201.59 cGy in conventional planning to 198.84; 199.05; and 199.06 cGy with an uncertainty of 5 mm, 10 mm and 15 mm for VMAT techniques, respectively. We found that the robust plan delivered a higher dose at OAR near the target than the conventional plan, but the dose is lower in the other areas on the IMRT technique. For VMAT, most of the OAR achieved a higher dose on a robust photon plan.