ABSTRAKDensely Connected Convolutional Networks (DenseNet) merupakan salah satu
model arsitektur Deep Learning yang menghubungkan setiap layer beserta feature-maps ke seluruh layer berikutnya, sehingga layer berikutnya menerima input
feature-maps dari seluruh layer sebelumnya. Karena padatnya arsitektur DenseNet
meyebabkan komputasi model memerlukan waktu lama dan pemakaian memory
GPU yang besar. Penelitian ini mengembangkan metode optimisasi DenseNet
menggunakan batching strategy yang bertujuan untuk mengatasi permasalahan
DenseNet dalam hal percepatan komputasi dan penghematan ruang memory GPU.
Batching strategy adalah metode yang digunakan dalam Stochastic Gradient
Descent (SGD) dimana metode tersebut menerapkan metode dinamik batching
dengan inisialisasi awal menggunakan ukuran batch kecil dan ditingkatkan
ukurannya secara adaptif selama training hingga sampai ukuran batch besar agar
terjadi peningkatan paralelisasi komputasi untuk mempercepat waktu pelatihan.
Metode batching strategy juga dilengkapi dengan manajemen memory GPU
menggunakan metode gradient accumulation. Dari hasil percobaan dan pengujian
terhadap metode tersebut dihasilkan peningkatan kecepatan waktu pelatihan hingga
1,7x pada dataset CIFAR-10 dan 1,5x pada dataset CIFAR-100 serta dapat
meningkatkan akurasi DenseNet. Manajemen memory yang digunakan dapat
menghemat memory GPU hingga 30% jika dibandingkan dengan native DenseNet.
Dataset yang digunakan menggunakan CIFAR-10 dan CIFAR-100 datasets.
Penerapan metode batching strategy tersebut terbukti dapat menghasilkan
percepatan dan penghematan ruang memory GPU.
ABSTRACTDensely Connected Convolutional Networks (DenseNet) is one of the Deep
Learning architecture models that connect each layer and feature maps to all
subsequent layers so that the next layer receives input feature maps from all
previous layers. Because of its DenseNet architecture, computational models
require a long time and use large GPU memory. This research develops the
DenseNet optimization method using a batching strategy that aims to overcome the
DenseNet problem in terms of accelerating computing time and saving GPU
memory. Batching strategy is a method used in Stochastic Gradient Descent (SGD)
where the technique applies dynamic batching approach with initial initialization
using small batch sizes and adaptively increased size during training to large batch
sizes so that there is an increase in computational parallelization to speed up training
time. The batching strategy method is also equipped with GPU memory
management using the gradient accumulation method. From the results of
experiments and testing of these methods resulted in an increase in training time
speed of up to 1.7x on the CIFAR-10 dataset and 1.5x on the CIFAR-100 dataset
and can improve DenseNet accuracy. Memory management used can save GPU
memory up to 30% when compared to native DenseNet. The dataset used uses
CIFAR-10 and CIFAR-100 datasets. The application of the batching strategy
method is proven to be able to produce acceleration and saving of GPU memory.