UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Optimasi Penyusunan Barang pada Kontainer Menggunakan Metode Algoritma Genetika = Optimization Arrangement of Goods on The Container Uses a Genetic Algorithm Method

Astri Amalia; Gunawan, supervisor; Yanuar, examiner; Agus Sunjarianto Pamitran, examiner (Fakultas Teknik Universitas Indonesia, 2020)

 Abstrak

Container loading menjadi inti permasalahan dari aktivitas logistik. Hal ini terjadi karena banyaknya ruang sisa pada kontainer yang tidak termanfaatkan akibat ketidaksesuaian perbandingan dimensi barang yang akan dimuat dengan dimensi kontainer. Kerugian yang ditimbulkan adalah cost untuk sewa kontainer akan bertambah juga kelelahan yang dialami helper. Oleh karena itu diperlukan suatu pengaturan yang baik agar penyusunan barang dalam kontainer dapat lebih optimal. Permasalahan ini dapat diselesaikan menggunakan metode algoritma genetika. Dimana prosesnya diawali dengan pembangkitan populasi awal, setelah itu dilakukan crossover dan mutasi, sebelum akhirnya dihitung nilai fitnessnya untuk kemudian dilakukan seleksi terhadap nilai fitness terbaik yang nantinya akan dijadikan sebagai solusi dari permasalahan yang ada. Dari hasil pengujian didapat parameter nilai terbaik yang akan mempengaruhi solusi, yakni ukuran populasi sebesar 100, nilai crossover rate sebesar 0,7, nilai mutation rate sebesar 0,3, dan ukuran generasi sebesar 50. Dari parameter yang telah didapatkan diperoleh nilai fitness terbaik sebesar 48,82. Kemudian nilai fitness ini divisualisasikan kedalam pola susunan barang yang optimal untuk digunakan sebagai solusi dari penyusunan barang di dalam kontainer.

The container loading is the major issues of logistics activity. This is because of the large amount of space left in the unused container as a result of the misalignment of the dimensions of goods that would be loaded with container dimensions. The loss are container rental cost will increase and fatigue experienced by helper. Therefore, a good arrangement is needed for more optimum. The matter can be solved using a genetic algorithm method. That process starts with initialization of the population, after it crossover and mutation, and then calculate the fitness value to use it for selection to get best fitness value that eventually becomes the solution for this problem. According to the tests, the best parameters, which will affect the solution, a population size is 100, a crossover rate is 0,7, a mutation rate is 0,3, and a generation size is 50. From the parameters obtained, the best fitness crose is 48,82. The final step, the value of this fitness is visualized into the optimal pattern arrangement of goods to be used as a solution for the container loading problem.

 File Digital: 1

Shelf
 S-Astri Amalia.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdacarries)
Deskripsi Fisik : xv, 49 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-21-353921910 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20505694
Cover