https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Algoritma Morphological Profile dan Attribute Filter untuk Pendeteksian Anomali pada Citra Hiperspektral = Morphological Profile and Attribute Filter Algorithm for Hyperspectral Anomaly Detection.

Ferdi Andika; Mia Rizkinia, supervisor; Dodi Sudiana, examiner; Prima Dewi Purnamasari, examiner; I Gde Dharma Nugraha, examiner (Fakultas Teknik Universitas Indonesia , 2020)

 Abstrak

ABSTRAK
Pada tesis ini diajukan sebuah metode baru untuk pendeteksian anomali pada citra hiperspektral, bernama algoritma morphological profile dan attribute filter. Metode ini terdiri dari tiga langkah. Pertama, menyeleksi sebuah pita spektral yang mengandung banyak informasi untuk pendeteksian anomali menggunakan sebuah algoritma baru berbasis entropi dan histogram count. Kedua, menghapus background pada pita spektral yang telah diseleksi menggunakan morphological profile. Kemudian memfilter false anomali menggunakan attribute filter. Sebuah algoritma baru juga diajukan pada tesis ini untuk menentukan luas maksimum area anomali. Eksperimen yang telah dilakukan dengan dataset citra hiperspektral riil menunjukkan bahwa metode yang diajukan memiliki rata-rata AUC sebesar 0.9916, lebih bagus dari metode FrFE-RX, AED, dan SDBP-D yang memiliki rata-rata AUC secara berturut-turut sebesar 0.9657, 0.9757, dan 0.9872. Metode yang diajukan pada tesis ini memiliki rata-rata waktu komputasi sebesar 0.25 detik, lebih cepat dari metode FrFE-RX, AED, dan SDBP-D yang memiliki rata-rata waktu komputasi secara berturut-turut sebesar 31.37, 0.55, dan 3667.2 detik.

ABSTRACT
In this thesis, a novel hyperspectral anomaly detection method, called morphological profile and attribute filter algorithm, is proposed. This method consists of three steps. First, select a band containing rich information for anomaly detection using a novel band selection algorithm based on entropy and histogram counts. Second, remove the background of the selected band with morphological profile. Then, filter the false anomaly with attribute filter. A novel algorithm is also proposed in this thesis to define the maximum area of anomalous objects. Experiments conducted on real hyperspectral datasets show that the average AUC of the proposed method is 0.9916, better than the average AUC of FrFE-RX, AED, and SDBP-D methods which are 0.9657, 0.9757, and 0.9872, respectively. Moreover, the average computing time of the proposed method is 0.25 seconds, faster than the average computing times of FrFE-RX, AED, and SDBP-D which are 31.37, 0.55, dan 3667.2 seconds, respectively.

 File Digital: 1

Shelf
 T-Ferdi Andika.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia , 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : x, 75 pages : illustration ; Appendix.
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-Pdf 15-22-45322498 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20505118
Cover