UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Metode Hierarchical Forecasting dengan Rekonsiliasi Minimum Trace = Hierarchical Forecasting with the Minimum Trace Reconciliation Method

Ramadhan Nugroho Dewanto; Mila Novita, supervisor; Saskya Mary Soemartojo, supervisor; Sarini Abdullah, examiner; Rianti Setiadi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

Hierarchical time series adalah sejumlah data time series yang mengikuti struktur penggabungan hierarki, dimana data time series pada level lebih tinggi adalah hasil penggabungan dari level yang lebih rendah. Fokus utama dari penelitian ini adalah untuk mem-forecast data berjenis hierarchical time series ini. Forecasting dapat dilakukan dengan menggunakan model hierarchical forecasting. Model ini bekerja dengan memforecast semua time series yang ada pada hierarki, secara individual, masing-masing
dengan menggunakan model terbaiknya. Akan tetapi, hasil forecast yang didapat dengan menggunakan model ini masih tidak koheren, yaitu penjumlahan hasil forecast pada level yang lebih bawah tidak sama dengan hasil forecast di level lebih atasnya. Hasil forecast ini dapat diperbaiki dengan merekonsiliasi hasil forecast yang telah didapat agar hasilnya koheren. Metode rekonsiliasi umum yang biasa digunakan adalah metode bottom-up atau top-down. Walau demikian, penelitian ini menggunakan metode rekonsiliasi minimum trace untuk mendapatkan hasil forecast koheren. Metode rekonsiliasi ini bekerja dengan meminimumkan variansi residual, dengan syarat hasil forecast koheren yang didapat bersifat tidak bias. Metode hierarchical forecasting dengan rekonsiliasi minimum trace ini akan diimplementasikan untuk mem-forecast jumlah pengangguran di Australia dan di setiap provinsinya pada tahun 2020, dengan menggunakan data pengangguran tahun 1979 hingga 2019. Nantinya, hasil forecast yang didapat di berbagai jenjang pada hierarki akan koheren.

Hierarchical time series is a collection of time series that follows a hierarchical aggregation structure, where the time series collection at the higher level is a result of lower leveled time series aggregation. The focus of this research is to forecast this hierarchical time series data. The forecasting can be done using the hierarchical forecasting model. This model works by forecasting each time series in the hierarchy individually using its best model. However, the forecast result from using this model is not coherent. It means that the forecast result summation of the lower level is not equal to the corresponding upper level forecast result. This forecast result can be improved with the help of reconciliation method, that makes the forecast coherent. Basic reconciliation
method that’s widely used is the bottom-up or top-down method. Even so, this research will use the minimum trace reconciliation method to get that coherent forecasts. This reconciliation method works by minimizing the residual variance, with the condition that the coherent forecast results are already unbiased. This hierarchical forecasting with minimum trace reconciliation method will then be implemented to forecast the unemployment number in Australia and its provinces on year 2020, using the unemployment number data from year 1979 until 2019. Later on, the forecast resulted on each level of the hierarchy will be coherent.

 File Digital: 1

Shelf
 S-Ramadhan Nugroho Dewanto.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xxix, 96 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-55207575 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20502222
Cover