Demam Berdarah
Dengue (DBD) disebabkan oleh virus
dengue yang disebarkan oleh nyamuk
Aedes aegypti dan
Aedes albopictus. Menurut WHO, sebagai negara yang berada di daerah tropis, Indonesia adalah negara yang berisiko DBD tinggi. DBD dapat menyebar dari penderita DBD ke orang yang sehat melalui gigitan nyamuk yang telah terinfeksi virus
dengue. Faktor cuaca yang terdiri dari temperatur, kelembaban, dan curah hujan mempunyai pengaruh terhadap jumlah insiden DBD. Dengan memprediksi jumlah insiden DBD, diharapkan pemerintah dan masyarakat lebih siap menangani DBD ketika jumlah insiden DBD diprediksi tinggi jumlahnya.
Pada tugas akhir ini, jumlah insiden DBD diprediksi dengan
support vector regression, dengan jumlah insiden dan faktor cuaca sebelumnya yang terdiri dari temperatur, kelembaban, dan curah hujan sebagai variabel prediktor. Fungsi kernel yang digunakan adalah kernel linear dan kernel
gaussian radial basis function (radial). Variabel prediktor ditentukan dengan mencari
time lag dari masing-masing variabel prediktor terhadap jumlah insiden menggunakan korelasi silang. Model yang dibentuk dievaluasi dengan
Root Mean Squared Error dan
Mean Absolute Error. Pada tugas akhir ini,
support vector regression dengan kernel linear memberikan performa yang lebih baik daripada kernel radial.
Dengue fever is a disease caused by dengue virus, which is spread by Aedes aegypti and Aedes albopictus mosquitoes. According to WHO, as a tropical country, Indonesia is a country at risk for dengue. Dengue can spread to other people by mosquitoes bite. Weather factors, such as temperature, humidity, and rainfall have effects on the number of dengue incidences. It is important to predict the number of incidences so that the government and people will be ready to prevent a dengue outbreak when the number of incidences is predicted high. In this final paper, number of dengue incidences in DKI Jakarta is predicted using support vector regression, with weather and the previous number of incidences as predictor variables. Linear and gaussian radial basis function kernel are used. These predictor variables are determined by analyzing the time lag between each predictor variables and the number of incidences by using cross correlation. Models for prediction are evaluated by Root Mean Squared Error and Mean Absolute Error. The result shows that support vector regression with linear kernel have better performance than support vector regression with gaussian radial basis function kernel for predicting dengue incidences number.