Pada dasarnya pilar jembatan yang telah dirancang dengan baik biasanya akan memiliki ketahanan yang baik terhadap beban rencana, baik beban aksial maupun beban lateral. Namun berdasarkan standar desain dalam Standar Nasional Indonesia (SNI) 1727:2013, langkah perhitungan untuk beban lateral berupa beban hidrodinamika banjir masih belum jelas, terutama untuk kecepatan aliran di atas 3,05 m/s. Oleh karena itu, dikhawatirkan desain pilar yang telah dibangun selama ini belum melalui proses perhitungan desain yang matang. Hal ini perlu diwaspadai dan segera dicarikan solusi agar ketika terjadi bencana seperti banjir bandang batuan di kemudian hari, struktur siap menerima beban dinamis yang besar. Salah satu solusi yang coba diadopsi dalam penelitian ini adalah dengan meningkatkan ketahanan struktur pilar jembatan melalui dua pilihan yaitu dengan menambah ukuran diameter pilar atau dengan menambah jumlah dan menyesuaikan posisi pilar terhadap rentang horizontal volume kontrol aliran banjir. Penelitian ini bertujuan untuk menemukan langkah yang paling tepat untuk menahan aliran banjir bandang batuan melalui analisis respon struktural, seperti tegangan, regangan, deformasi, dan reaksi momen pada pilar. Untuk mencapai tujuan tersebut digunakan software ANSYS 2019 R1 sebagai alat pemodelan. Selain itu juga dibuat beberapa skenario pemodelan dengan variasi langkah peningkatan tahanan dan kerapatan aliran banjir untuk mendapatkan hasil yang benar dan logis. Hasil penelitian menunjukkan bahwa langkah memperbesar diameter pilar merupakan pilihan yang tepat dalam meningkatkan ketahanan struktur, dan semakin meningkatnya kerapatan aliran banjir akan meningkatkan nilai respon struktur yang terjadi pada pilar.
Basically, bridge piers that have been designed properly will usually have good resistance to design loads, both axial loads and lateral loads. However, based on the design standard in the Indonesian National Standard (SNI) 1727:2013, the calculation steps for lateral loads in the form of flood hydrodynamic loads are still unclear, especially for flow velocities above 3.05 m/s. Therefore, it is feared that the pillar designs that have been built so far have not gone through a mature design calculation process. This needs to be watched out for and immediately find a solution so that when a disaster occurs such as a flash flood of rocks in the future, the structure is ready to accept large dynamic loads. One of the solutions that is tried to be adopted in this study is to increase the resilience of the bridge pier structure through two options, namely by increasing the size of the diameter of the pillars or by increasing the number and adjusting the position of the pillars to the horizontal range of flood flow control volume. This study aims to find the most appropriate steps to withstand the flash flood flow of rocks through the analysis of structural responses, such as stress, strain, deformation, and moment reactions on the pillars. To achieve this goal, the ANSYS 2019 R1 software is used as a modeling tool. In addition, several modeling scenarios were made with variations in steps to increase resistance and flood flow density to get correct and logical results. The results showed that the step to increase the diameter of the pillars is the right choice in increasing the resilience of the structure, and the increasing flood flow density will increase the value of the structural response that occurs in the pillars.