https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Sistem computer-aided detection kelenjar getah bening mediastinal menggunakan metode 3D Convolutional Neural Network = Mediastinal lymph node computer-aided detection system using 3D Convolutional Neural Network method

Eddy Kurniawan; Prawito Prajitno, supervisor; Djarwani Soeharso Soejoko, supervisor; Supriyanto Ardjo Pawiro, examiner; I Putu Susila, examiner; Prijo Sidipratomo, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019)

 Abstrak

Kanker paru merupakan kanker yang paling banyak ditemukan dan paling mematikan di dunia. Penentuan stadium kanker paru umumnya dilakukan oleh dokter radiologi dengan melihat pembesaran kelenjar getah bening (KGB) mediastinal. KGB mediastinal cukup sulit dideteksi secara visual dikarenakan memiliki kontras yang rendah  terhadap jaringan di sekitarnya, ukuran dan bentuknya yang bervariasi, serta tersebar di berbagai lokasi. Oleh karena itu, akhir – akhir ini dikembangkan sistem computer-aided detection (CADe) sebagai alat bantu bagi dokter radiologi untuk mendeteksi KGB mediastinal secara otomatis. Metode terbaik saat ini dalam sistem CADe KGB mediastinal tersebut menggunakan 2D convolutional neural network (CNN) yang diterapkan dari 3 sudut pandang (axial, coronal, sagittal). Namun, sifat 3D dari KGB mediastinal dihipotesakan akan lebih terwakili jika menggunakan 3D CNN. Oleh karena itu, dalam penelitian ini digunakan 3D CNN yang kemudian diubah menjadi 3D fully convolutional network (FCN)  untuk mendeteksi kandidat KGB mediastinal di dalam suatu tumpukkan citra CT. Kandidat KGB mediastinal tersebut kemudian dianalisa untuk mengurangi false positive (FP) menggunakan 3 metode, yaitu perhitungan mean HU, deteksi kontur menyerupai lingkaran, dan klasifikasi menggunakan 3D CNN. Performa terbaik dari sistem CADe KGB mediastinal ini diperoleh ketika menggunakan 3D CNN dalam tahap pengurangan FP dengan sensitivitas 77% dan 12 FP/pasien.

Lung cancer is the most common and the deadliest cancer in the world. Lung cancer staging usually was done by radiologist by detecting mediastinal lymph node (LN) enlargement. Mediastinal LN is difficult to be detected visually due to its low contrast to the surrounding tissues, various size and shape, and sparse location. Therefore, computer-aided detection (CADe) system has been developed as a tool for radiologist to detect medistinal LN automatically. The state of the art mediastinal LN CADe system used 2D convolutional neural network (CNN) from 3 planar views (axial, coronal, sagittal). However, the 3D features of mediastinal LN are hypothesized to be more reprenseted if 3D CNN is used. Therefore, in this experiment we used 3D CNN which is converted to 3D fully convolutional network (FCN) to detect mediastinal LN candidate in a stack of CT images. Then, the mediastinal LN candidates were analyzed using 3 methods to reduce the false positive (FP), which are the calculation of the mean HU, the blob detection, and the classification using 3D CNN. The best performance of this CADe system was achieved when the 3D CNN was used in the FP reduction stage which has 77% of sensitivity and 12 FP/ patient.

 File Digital: 1

Shelf
 T54516-Eddy Kurniawan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T54516
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : viii, 47 pages : illustrations ; 30 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T54516 15-21-308841877 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20492132
Cover