ABSTRAKDalam proses co-pyrolysis, Polipropilen berfungsi untuk menyingkirkan oksigen sehingga yield fraksi non-polar (non-teroksigenasi) menjadi lebih tinggi. Namun, kemampuan PP untuk menyita oksigen masih rendah karena hemiselulosa dan selulosa terurai sebagian besar pada suhu di bawah 400oC, sedangkan PP sebagian besar di atas 400oC. Oleh karena itu, keduanya hanya memiliki interval suhu dekomposisi secara bersamaan yang kecil untuk memungkinkan interaksi antara bonggol jagung dan PP. Dalam penelitian ini, katalis diperkenalkan pada proses co-pyrolysis untuk mengurangi suhu terendah dekomposisi massa PP menjadi kurang dari 400oC agar meningkatkan interval suhu dekomposisi bersamaan. Katalis zeolit diteliti dengan memvariasikan tipenya yakni alam dan sintetik (beta) yang dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0%:100%, 50%:50%, dan 100%:0%. Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500oC, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 250 gram. Hasil penelitian ini menunjukkan terdapat pengaruh katalis baik zeolit alam maupun zeolit beta terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Dengan catalytic pirolisis, yield bio-oil cenderung menurun untuk semua variasi komposisi. Sebaliknya, yield char dan non condensable gas cenderung meningkat. Sedangkan, komposisi yang dominan dengan adanya katalis ialah alkana pada non polar dan metoksi pada H-NMR polar juga keton pada C-NMR polar. Pada produk bio-oil nonpolar, baik zeolit beta, zeolit alam, dan non katalis memiliki nilai branching index masing- masing yaitu 0,997; 1,052; dan 1,054 yang menunjukkan bio-oil nonpolar memiliki rantai karbon lurus dengan cabang lebih banyak apabila dibadingkan dengan bahan bakar komersial. Selain itu, nilai HHV yang dimiliki bio-oil diatas nilai produk bahan bakar bensin komersial yakni 47,93 untuk zeolit alam dan 47,95 untuk zeolit beta.
ABSTRACTIn the process of co-pyrolysis, Polipropylene serves to get rid of oxygen so that the yield of non-polar (non-oxygenated) fractions becomes higher. However, the ability of PP to confiscate oxygen is still low because hemicellulose and cellulose decompose mostly at temperatures below 400oC, while PP is mostly above 400oC. Therefore, both of them only have small decomposition temperature intervals to allow interaction between corn cobs and PP. In this study, catalysts were introduced in the co-pyrolysis process to reduce the lowest temperature of PP mass decomposition to less than 400oC in order to increase the intervals of concurrent decomposition temperatures. Zeolite catalysts were investigated by varying the types of natural and synthetic (beta) which were carried out at 3 ratios of corncob composition and polypropylene plastic, namely 0%: 100%, 50%: 50%, and 100%: 0%. The slow co-pyrolysis process takes place in a stirred tank reactor, with a final temperature of 500oC, a holding time of 10 minutes, a heating rate of 5oC / minute, and a total feed mass of 250 grams. The results of this study indicate that there are effects of catalysts both natural zeolite and beta zeolite on the yield and composition of bio-oil resulting from slow co-pyrolysis of corncob and polypropylene plastic. With catalytic pyrolysis, bio-oil yield tends to decrease for all variations in composition. Conversely, the yield of char and non-condensable gas tends to increase. Meanwhile, the dominant composition in the presence of a catalyst is alkane for non-polar and metoxy for H-NMR polar also ketone for C-NMR polar. In nonpolar bio-oil products, both beta zeolite, natural zeolite, and non-catalyst have a branching index value of 0.997; 1,052; and 1,054 which shows that non-polar bio-oil has more straight carbon chains with branches must be compared with commercial fuels. In addition, the HHV value of bio-oil above the value of commercial gasoline fuel products is 47.93 for natural zeolite and 47.95 for beta zeolite.