UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Analisis perancangan model klasifikasi kondisi hot well pump A pembangkit listrik panas bumi PT. PGE Area Kamojang unit A dengan metode pendekatan machine learning untuk menentukan jadwal overhaul inspeksi = Design classification analysis of hot well pump A condition in geothermal power plant PT. PGE Kamojang unit a with machine learning approach method for determining schedule of overhaul inspection

Olga Marcelina; Nasruddin, supervisor; Nanang Kurniawan, supervisor; Engkos Achmad Kosasih, examiner; Agung Subagio, examiner (Fakultas Teknik Universitas Indonesia, 2018)

 Abstrak

Peralatan dan komponen di Pembangkit Listrik Tenaga Panas Bumi harus selalu diperhatikan keandalan serta ketersediaannya. Sehingga untuk memenuhi hal tersebut sangat diperlukannya program pemeliharaan atau maintenance. Hot well pump sendiri merupakan salah satu komponen utama yang sangat berpengaruh pada produktivitas sistem pembangkit listrik. Karena itulah reliability dan availability dari mesin sangat berpengaruh untuk sistem pembangkit secara keseluruhan. Peningkatan nilai availability ini dapat dilakukan dengan meningkatkan efektivitas daripada waktu operasi uptime mesin tersebut. Adapun sistem pemeliharaan yang dirasa tepat untuk meningkatkan availability tersebut adalah sistem pemeliharaan prediktif yang didasarkan pada kondisi aktual mesin condition-based maintenance.
Dalam sistem ini, pemeliharaan akan dilakukan hanya ketika terdapat tanda-tanda penurunan performa mesin. Untuk itu dilakukan perancangan sebuah model prediksi dengan dengan pendekatan machine learning pada metode Classification Learner untuk mempelajari dan mengklasifikasikan rekaman data operasi mesin dalam jumlah besar dari sensor parameter mesin terkait dan menggunakan MATLAB sebagai perangkat lunak pengolah data. Model ini diharapkan dapat menjadi solusi dalam menentukan jadwal pemeliharaan mesin yang tepat sesuai dengan kondisi aktualnya.

Equipments and components in the Geothermal Power Plant shall always be noted for its reliability and availability. It is very necessary a good maintenance program. Hot well pump itself is one of the main components that are very influential on the productivity of power generation systems. That is why reliability and availability of that machine is very influential for the overall generating system. The increased availability value can be achieved by increasing the effectiveness of the machine 39 s uptime operation time. The maintenance system that considered appropriate to increase availability is a predictive maintenance system based on the actual condition of the machine condition based maintenance.
In this system, maintenance will be held only when there are signs of decreased machine performance. For that purpose, designing a prediction model with machine learning approach in Classification Learner method is used to study and classify the machine operation data record in large quantities from the sensor of that machine parameters and using MATLAB as a data processing software. This model is expected to be a solution in determining the exact machine maintenance schedule of machine in accordance with actual conditions.

 File Digital: 1

Shelf
 S-pdf-Olga Marcelina.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2018
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xv, 70 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-20-347228010 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20473613
Cover