UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Prediksi interaksi protein pada human immunodeficiency virus menggunakan discrete cosine transform dikombinasikan dengan rotation forest ensemble classifier = Sequence based prediction of protein protein interaction in human immunodeficiency virus using discrete cosine transform combined with rotation forest ensemble classifier

Shirley Aprilia; Alhadi Bustamam, supervisor; Dian Lestari, supervisor; Djati Kerami, examiner; Titin Siswantining, examiner ([Publisher not identified] , 2018)

 Abstrak

ABSTRAK
Protein adalah salah satu biomakromolekul yang mempunyai peran sangat penting dalam organisme hidup. Semua jenis protein terdiri dari serangkaian kombinasi 20 asam amino. Interaksi Protein-Protein Interaksi PPI memainkan peran penting dalam sebagian besar proses biologis sehingga deteksi interaksi protein-protein PPI pada dasarnya penting untuk memahami mekanisme molekuler dalam sistem biologis. Dengan menggunakan proses komputasi dan menerapkan metode pembelajaran mesin, akan lebih efisien daripada metode eksperimental yang membutuhkan waktu lama dan biaya mahal. Dalam tesis ini penulis menggunakan Discrete Cosine Transform sebagai metode fitur ekstraksi barisan asam amino dan Rotation Forest sebagai model klasifikasi untuk mendapatkan kinerja yang lebih baik daripada metode sebelumnya, seperti Support Vector Machine, Random Forest, dan lain-lain. Hal baru dalam tulisan ini terletak pada interaksi protein protein dengan virus HIV yang menyebabkan AIDS. Hasil penelitian menunjukkan bahwa metode yang diusulkan layak dilakukan, kuat dan dapat digunakan untuk prediksi interaksi protein-protein lainnya dengan akurasi hingga 77 dan metode transformasi Rotation Forest yang menggunakan PCA lebih baik dibandingkan metode transformasi Rotation Forest yang menggunakan IPCA. Terdapat 962 protein yang berpotensi berinteraksi pada PCA dari 4529 potein dan 2902 protein pada IPCA dari 7499 protein.

ABSTRACT
Protein is one of the bio macromolecules that have a very important role in living organisms. All types of proteins consist of a series of combinations of 20 amino acids. Interaction of Protein Protein Interactions PPI plays an important role in most biological processes so that the detection of protein protein interactions PPIs is basically important for understanding molecular mechanisms in biological systems. By using computational processes and applying machine learning methods, it will be more efficient than experimental methods that take a long time and costly. In this thesis the author uses Discrete Cosine Transform as a method of extraction of amino acid sequences and Rotation Forest as a prediction model to get better performance than previous methods, such as Support Vector Machine, Random Forest, etc . The novelty in this paper lies in the interaction of protein proteins with the HIV virus that causes AIDS. The results show that the proposed method is feasible, robust and can be used for the classification of other protein interactions with up to 77 accuracy and Rotation Forest transformation methods using PCA better than Rotation Forest transformation methods using IPCA. There are 962 potentially interacting proteins in the PCA of 4529 potein and 2902 proteins in IPCA of 7499 proteins.

 File Digital: 1

Shelf
 T49487-Shirley Aprilia.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T49487
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2018
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 57 pages: illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T49487 15-18-049101963 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20467565
Cover