https://access.unram.ac.id/wp-content/

UI - Tugas Akhir :: Kembali

UI - Tugas Akhir :: Kembali

Perancangan sistem rekomendasi berbasis sna social network analysis untuk memprediksi penerimaan produk telekomunikasi pada customer: studi kasus: PT XL Axiata = Social network analysis based recommendation system for customer acceptance of telecomunication product prediction: a case study PT XL Axiata

Muhammad Khanifan Akhsani Taqwin; Mohamad Ivan Fanany, supervisor; Yova Rudelviyani, examiner; Denny, examiner ([Publisher not identified] , 2017)

 Abstrak

ABSTRAK<>br>
Dalam persaingan yang ketat di dunia industri, khususnya dalam industri telekomunikasi semakin ketat. Oleh karena itu, masing-masing operator telekomunikasi berlomba-lomba untuk memberikan layanan terbaik agar dapat menarik konsumen yang lebih banyak. Namun, sebelum membuat suatu layanan telekomunikasi, haruslah ada analisis pasar khususnya pelanggan, agar dapat diketahui layanan seperti apa yang dibutuhkan dan diinginkan oleh pelanggan tersebut. Dengan perkembangan sistem informasi, analisis menggunakan data mining menjadi pilihan. Dalam penelitian ini dibuat suatu model KDD Knowledge Discovery Data dengan menggunakan algoritma sistem rekomendasi yang dikombinasikan dengan social network analysis untuk memprediksi suatu layanan apakah diterima oleh pelanggan atau tidak. Dalam penelitian ini terdapat empat macam model sistem rekomendasi, yaitu collaborative filtering, content based filtering, hybrid filtering dan stochastic gradient descent. Kemudian hybrid filtering dan stochastic gradient descent dikombinasikan dengan hasil analisis dari jaringan sosial yang berupa nilai-nilai pagerank, eigenvector, modularity, degree dan sebagainya. Hasil dari kombinasi hybrid filtering dengan hasil analisis jaringan sosial tidak terlalu signifikan dan cenderung tetap, sedangkan hasil dari kombinasi stochastic gradient descent dengan hasil dari analisa jaringan sosial dapat menurunkan nilai RMSE dan MAE sebesar 0,001 sampai 0,010 dan 0,011 sampai 0,013.

ABSTRACT<>br>
In the fierce competition in the industrial world, especially in the telecommunications industry is getting tighter. Therefore, each telecommunicationoperator will compete to provide the best service to attract more consumers. However, before performing a telecommunication service, there must be a market analysis, especially customers, to know what kind of service is needed and desired by the customer. With the development of information systems, analysis using data mining becomes an option. In this research will be made a model of KDD Knowledge Discovery Data using a recommendation system algorithm combined with social network analysis to predict a service whether received by customers or not. In this research, there are four models of the recommendation system they are collaborative filtering, content based filtering, hybrid filtering and stochastic gradient descent. Then hybrid filtering and stochastic gradient descent combined with the results of analysis of social networks in the form of PageRank values, eigenvector, modularity, degree and so forth. The result of hybrid filtering combination with social network analysis result is not very significant and tends to remain, while the result of stochastic gradient descent combination with result of social network analysis can decrease RMSE and MAE value about 0.001 to 0.010 and 0.011 to 0.013.

 File Digital: 1

Shelf
 TA-Muhammad Khanifan Akhsani Taqwin.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tugas Akhir
No. Panggil : TA-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2017
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xii, 84 pages : illustration ; 30 cm
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
TA-Pdf 16-19-855487984 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20459686
Cover