https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Teknologi credit scoring menggunakan metode fuzzy logistic regression = Credit scoring technology using fuzzy logistic regression method

Ulfa Fauziah; Zuherman Rustam, supervisor; Yudi Satria, supervisor; Dhina Widya, examiner; Maulana Malik, examiner ([Publisher not identified] , 2017)

 Abstrak

ABSTRAK
Kredit merupakan salah satu bentuk penyaluran dana yang dilakukan oleh lembaga keuangan perbankan. Berbagai jenis kredit ditawarkan oleh pihak-pihak yang memberikan pinjaman, salah satu jenis kredit yang paling diminati adalah kredit uang. Dalam memberikan kredit, pihak bank tidak akan begitu saja dalam memberikan kredit. Model teknologi credit scoring dapat dimanfaatkan untuk menyaring peminjam. Model logistic regression dapat digunakan untuk menghubungkan probabilitas kegagalan pinjaman kredit macet dengan menggunakan data calon peminjam yang diperlukan seperti besar pendapatan perbulan, besar pinjaman, usia calon peminjam, klasifikasi pekerjaan, jenis tempat tinggal dan kepemilikan jaminan. Atribut-atribut tersebut akan dievaluasi oleh bilangan fuzzy. Sehingga diharapkan metode fuzzy logistic regression dapat digunakan untuk menentukan probabilitas kredit macet dimana dengan probabilitas tersebut dapat diketahui apakah pinjaman yang diajukan calon peminjam akan masuk kedalam kategori kredit macet atau kredit lancar.

ABSTRACT
Credit is one form of distribution of funds by financial institutions banking. Various types of loans offered by the parties are on loan, one type of credit the most popular is credit money. In providing credit, the bank will not just provide credit. Model of credit scoring technology can be used to screen borrowers. Logistic regression models can be used to connect the probability of failure of loans bad loans using data from the prospective borrower required such a large monthly income, loan size, the age of prospective borrowers, job classification, type of dwelling and ownership guarantee. The attributes will be evaluated by fuzzy numbers. So expect fuzzy logistic regression method can be used to determine the probability of bad loans in which the probability can be known whether the proposed loan to potential borrowers will be entered into the category of bad credit or good credit.

 File Digital: 1

Shelf
 S68422-Ulfa fauziah .pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S68422
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2017
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xv, 51 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S68422 14-19-521093842 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20458393
Cover