eBooks :: Kembali

eBooks :: Kembali

Intersections of Hirzebruch–Zagier divisors and CM cycles

Benjamin Howard (Springer, 2012)

 Abstrak

This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.

 File Digital: 1

Shelf
 Intersections of Hirzebruch?Zagier Divisors and CM Cycles.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : eBooks
No. Panggil : e20420467
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : Berlin: Springer, 2012
Sumber Pengatalogan : LibUI eng rda
Tipe Konten : text
Tipe Media : computer
Tipe Pembawa : online resource
Deskripsi Fisik :
Tautan : http://link.springer.com/book/10.1007%2F978-3-642-23979-3
Lembaga Pemilik :
Lokasi :
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
e20420467 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20420467
Cover