https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Aplikasi algoritma metaheuristik basis fuzzy K- modes untuk supplier clustering = Application of metaheuristic based fuzzy K-modes algorithm to supplier clustering

Yuliana Portti; Amalia Suzianti, supervisor; Arian Dhini, supervisor; Erlinda Muslim, examiner; Maya Arlini Puspasari, examiner (Fakultas Teknik Universitas Indonesia, 2015)

 Abstrak

Penelitian ini mengusulkan tiga algoritma meta-heuristik berbasis Fuzzy K-modes untuk clustering binary data set. Ada tiga metode metaheuristik diterapkan, yaitu Particle Swarm Optimization (PSO), Genetika Algoritma (GA), dan Artificial Bee Colony (ABC). Ketiga algoritma digabungkan dengan algoritma K-modes. Tujuannya adalah untuk memberikan modes awal yang lebih baik untuk K-modes. Jarak antara data ke modes dihitung dengan menggunakan koefisien Jaccard. Koefisien Jaccard diterapkan karena dataset mengandung banyak nilai nol . Dalam rangka untuk melakukan pengelompokan set data real tentang supplier otomotif di Taiwan, algoritma yang diusulkan diverifikasi menggunakan benchmark set data. Hasil penelitian menunjukkan bahwa PSO K-modes dan GA K-modes lebih baik dari ABC K-modes. Selain itu, dari hasil studi kasus, GA K-modes memberikan SSE terkecil dan juga memiliki waktu komputasi lebih cepat dari PSO K-modes dan ABC K-modes.

This study proposed three meta-heuristic based fuzzy K-modes algorithms for clustering binary dataset. There are three meta-heuristic methods applied, namely Particle Swarm Optimization (PSO) algorithm, Genetic Algorithm (GA) algorithm, and Artificial Bee Colony (ABC) algorithm. These three algorithms are combined with k-modes algorithm. Their aim is to give better initial modes for the k-modes. Herein, the similarity between two instances is calculated using jaccard coefficient. The Jaccard coefficient is applied since the dataset contains many zero values. In order to cluster a real data set about automobile suppliers in Taiwan, the proposed algorithms are verified using benchmark data set. The experiments results show that PSO K-modes and GA K-modes is better than ABC K-modes. Moreover, from case study results, GA fuzzy K-modes gives the smallest SSE and also has faster computational time than PSO fuzzy K-modes and ABC fuzzy K-modes.

 File Digital: 1

Shelf
 T44406-Yuliana Portti.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T44406
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2015
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xv, 93 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T44406 15-24-06511708 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20414356
Cover