https://access.unram.ac.id/wp-content/

eBooks :: Kembali

eBooks :: Kembali

Data-driven methods for adaptive spoken dialogue systems: computational learning for conversational interfaces

Oliver Lemon, Olivier Pietquin (Springer-Science, 2012)

 Abstrak

Data driven methods have long been used in Automatic Speech Recognition (ASR) and Text-To-Speech (TTS) synthesis and have more recently been introduced for dialogue management, spoken language understanding, and Natural Language Generation. Machine learning is now present “end-to-end” in Spoken Dialogue Systems (SDS). However, these techniques require data collection and annotation campaigns, which can be time-consuming and expensive, as well as dataset expansion by simulation. In this book, we provide an overview of the current state of the field and of recent advances, with a specific focus on adaptivity.

 File Digital: 1

Shelf
 Data-Driven Methods for Adaptive Spoken Dialogue Systems.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : eBooks
No. Panggil : e20407915
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : New York: Springer-Science, 2012
Sumber Pengatalogan : LibUI eng rda
Tipe Konten : text
Tipe Media : computer
Tipe Pembawa : online resource
Deskripsi Fisik :
Tautan : http://link.springer.com/book/10.1007%2F978-1-4614-4803-7
Lembaga Pemilik :
Lokasi :
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
e20407915 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20407915
Cover