Nanopartikel Fe- doped ZnO/Montmorillonite dengan empat variasi konsentrasi dopant disintesis menggunakan metode kopresipitasi. Seluruh sampel menunjukkan fase tunggal dari struktur hexagonal wurzite ZnO pada spektrum X-ray Diffraction (XRD), namun fase sekunder dari ZnFe2O4 ditemukan pada sampel dengan konsentrasi dopant 12 at.%. Keberadaan dopant Fe dan montmorillonite dikonfirmasi menggunakan spektroskopi Energy Dispersive X-ray (EDX), Fourier Transform Infrared (FTIR), dan Electron Spin Resonace (ESR). Hasil spektroskopi UV-Vis Diffuse Reflectance (UV-Vis DRS) menunjukkan nilai celah energi yang diperoleh menurun seiring meningkatnya konsentrasi dopant. Uji aktivitas fotokatalitiik dipelajari dengan menggunakan Congo Red (CR) sebagai model polutan organik di bawah paparan sinar Ultra Violet (UV). Degradasi CR yang diamati meningkat seiring meningkatnya konsentrasi dopant. Studi efek dosis katalis dan konsentrasi awal CR menunjukkan hasil optimum dapat tercapai saat menggunakan 0.7g/L Fe-doped ZnO/Montmorillonite 12 at.% untuk mendegradasi 20 mg/L CR pada pH netral. Jenis Reactive Oxygen Species (ROS) yang paling berperan pada aktivitas fotokatalitik ialah elektron (e-)> hole (h+)> OH.
Four variations in dopant concentration of Fe-doped ZnO/Montmorillonite nanoparticles were synthesized using co-precipitation method. X-Ray Diffraction spectrum are shown hexagonal wurzite structure for all samples, while at 12 at.% doping concentration the secondary fase of ZnFe2O4 is detected. The existence of Fe dopant and montmorillonite are confirmed by Energy Dispersive X-Ray, Fourier Transform Infrared, and Electron Spin Resonance Spectroscopies. Results of UV-Vis Diffuse Reflectance Spectroscopy shows tendency of energy gap decreases with increasing dopant concentration. Photocatalytic activities were evaluated by using Congo Red (CR) as a model of organic pollutants under UV light irradiation. The optimum condition to degrade 20 mg/L CR obtains for 0.7 g/L of 12 at.% Fe-doped ZnO/Montmorillonite in neutral condition. The type of Reactive Oxygen Species (ROS) that most contribute on photocatalytic activity is as followed electron (e-)> hole (h+)> OH.