https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Analisis perbandingan sistem penilaian esai otomatis (Simple-O) berbasis algoritma generalized latent semantic analysis (GLSA) laplacian eigenmaps embedding (LEM) dan hybrid indexing = Comparative analysis of generalized latent semantic analysis (GLSA) laplacian eigenmaps embedding (LEM) and hybrid indexing algorithm on automatic essay grader Simple-O

Dandun Kusuma Yudha; Anak Agung Putri Ratna, supervisor; Prima Dewi Purnamasari, examiner; Yan Maraden, examiner (Fakultas Teknik Universitas Indonesia, 2014)

 Abstrak

Skripsi ini membahas tentang perbandingan dua algoritma untuk sistem penilaian esai otomatis (Simple-O), yaitu generalized latent semantic analysis (GLSA) laplacian eigenmaps embedding (LEM) dan hybrid indexing. Kedua algoritma tersebut dibandingkan untuk mengetahui cara kerja kedua algoritma tersebut, kecepatan proses, dan hasil penilaiannya. Perbandingan cara kerja dilakukan dengan membandingkan pseudocode dari masing-masing algoritma. Kecepatan proses dihitung untuk mengetahui algoritma yang lebih cepat dalam menilai esai.
Algoritma GLSA hybrid indexing merupakan pengembangan dari algoritma LEM. Perbedaan mendasar dari kedua algoritma tersebut adalah pada perlakuan kata benda dan kata-kata selain kata benda. Penelitian ini menggunakan sampel delapan soal yang dikerjakan oleh 48 mahasiswa (384 data). Dari hasil penelitian, GLSA LEM memiliki total waktu proses 46.51454 detik lebih cepat dari GLSA hybrid indexing. Sedangkan rata-rata waktu proses GLSA LEM dan GLSA hybrid indexing untuk menilai satu jawaban adalah 6-6.6 detik. Hasil penilaian dari GLSA LEM dan GLSA hybrid indexing memiliki tingkat kemiripan tertinggi 95,83% dan terendah 16,67%. Dari percobaan sebanyak delapan soal, lima diantaranya memiliki tingkat kemiripan lebih dari 83,33%.

This thesis discusses the comparison between two algorithms which used in automated essay grading system (Simple-O). The two algorithms are generalized latent semantic analysis (GLSA) embedding laplacian eigenmaps (LEM) and hybrid indexing. Both algorithms are compared to determine how the algorithms works, processing time, and the scores. Pseudocode can be used to determine how the algorithms are working, The processing time is calculated to find out which algorithm is faster in assessing essays.
GLSA hybrid indexing algorithm is a development from GLSA LEM. The fundamental difference of the two algorithms is in the treatment of a subset of nouns and words other than nouns. This research using samples of eight questions which filled by 48 students (384 data). From the research, GLSA LEM has a total processing time of 46.51454 seconds faster than GLSA hybrid indexing. While the average processing time GLSA LEM and hybrid GLSA indexing to grade the answer is 6 to 6.6 seconds. GLSA LEM and GLSA hybrid indexing grades have the highest similarity level of 95.83% and 16.67% for the lowest similarity level. From the eight questions, five questions have similarity level more than 83.33%.

 File Digital: 1

Shelf
 S53110-Dandun Kusuma Yudha.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S53110
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2014
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online source
Deskripsi Fisik : xii, 56 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S53110 14-22-87609560 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20368569
Cover