Keselamatan, kesehatan, kenyamanan dan kemudahan akses merupakan aspek utama dalam pertimbangan desain. Pola pembangunan perkotaan membutuhkan pemahaman yang lebih baik mengenai pentingnya pemanfaatan ruang bawah tanah. Dalam desain stasiun kereta bawah tanah, menyediakan akses untuk cahaya alami tidak hanya meningkatkan kesehatan ruang bawah tanah, tetapi juga menyediakan kemungkinan untuk memperpanjang batas waktu evakuasi pada kondisi darurat. Studi ini mempelajari dinamika asap kebakaran dengan menggunakan model skala laboratorium dan model numerik untuk memprediksi pergerakan asap kebakaran stasiun bawah tanah. Uji kebakaran dilakukan pada model stasiun kereta bawah tanah tipikal skala 1:25, sedangkan "eksperimen numerik" dilakukan dengan menggunakan Fire Dynamic Simulator versi 5. Dua skenario kebakaran umum pada studi ini merupakan model stasiun dengan sistem ventilasi paksa dan sistem gabungan yang merupakan gabungan antara sistem ventilasi paksa dan efek ventilasi natural (efek cerobong asap) sebagai manajemen asap hasil kebakaran. Pengaruh lokasi kebakaran pada distribusi penyebaran asap diukur secara simultan pada model stasiun. Studi ini dapat menunjukkan adanya keserupaan hasil antara model numerik dan eksperimental pada daerah tertentu. Sistem ventilasi gabungan terbukti lebih edektif dalam menyediakan kondisi lingkungan yang kondusif pada saat kebakaran terjadi. Selanjutnya, atrium dengan bukaan pada langit - langit dan terhubung dengan lingkungan terbuka dapat memberikan bantuan penyediaan cahaya alami pada stasiun.
Safety, health, comfort and accessibility are major important aspects in building design consideration. Trends in urban development requires better understanding on the importance of underground space utilisation. In a subway station design, providing access for natural light not only improve the health of underground space, but also has the possibility to extent the evacuation time during emergency evacuation. This paper models scaled fire tests and numerical modelling to predict smoke movement in subway station's fire. Fire test was carried out in a 1:25 scale of typical subway station, while numerical modelling was performed with the NIST Fire Dynamic Simulator V5. Two main scenarios was selected, i.e. a forced ventilation system and a hybrid system combining the forced ventilation and the natural ventilation effect (the chimney effect). The effect of fire locations on the distribution of smoke spread was measured simultaneously along the station model. This study found a good agreement between the results of numerical study and the scaled experimental works in certain regions. The hybrid ventilation system effectively removed smoke across the station space, hence provided longer time for evacuation time. Furthermore, the open atria installed through the platform level may provide natural light to station levels.