https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Pengaruh single VS multiple prototype menggunakan metode incremental learning pada algoritma fuzzy neuro generalized learning vector quantization FNGLVQ = Influence of single versus multiple prototype using incremental learning method for fuzzy neuro generalized learning vector quantization fnglvq algorithm / Khairani Djahara

Khairani Djahara; Wisnu Jatmiko, supervisor; Ito Wasito, examiner; Mohamad Ivan Fanany, examiner; Denny, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2013)

 Abstrak

ABSTRAK
Pemilihan prototype menggunakan single prototype memiliki kelemahan dimana daerah yang minor (distribusi datanya sedikit) belum dapat ter-cover dengan baik, sehingga dibutuhkan penggunaan multiple prototype agar data yang memiliki ketersebaran data yang tidak merata pada kelas yang sama dapat terwakilkan. Pada penelitian kali ini, akan diterapkan suatu metode incremental learning yang akan diintegrasikan dengan algoritma FNGLVQ. Metode incremental learning yang digunakan adalah metode random, statis dan dinamis. Metode random dilakukan dengan cara memilih prototype dari luar secara random dengan penetapan jumlah 2,5,10 dan 20 prototype perkelasnya; metode statis dengan memanfaatkan sifat keabuan dari nilai similaritas fuzzy yaitu menggunakan threshold di bawah nilai 0.5, 0.4, 0.3, 0.2 dan 0.1 sebagai kriteria pemasukan prototype sementara untuk metode dinamis juga menggunakan threshold yang diadaptasi dari penelitian (Xu Ye, 2012), namun dalam penelitian ini akan dilakukan penyesuaian mengikuti bentuk prototype yang digunakan yaitu dalam bentuk fuzzy. Dari keseluruhan metode incremental learning ini yang digunakan baik random, statis maupun dinamis, akurasi meningkat sebesar ±3 – 5% dari single prototype. Sementara untuk metode dinamis sendiri memiliki keunggulan di atas rata-rata dari metode random maupun statis baik dalam hal akurasi dan efisiensi jumlah prototype yaitu sebesar 94.78% dengan ±7 buah prototype pada uji data simulasi dengan menggunakan gaussian mixture models.
ABSTRACT
Selection of prototype using single have a weakness where minor area could not cover well and need multiple prototype for a solution. In this research, incremental learning method will be integrated to FNGLVQ algorithm. Incremental learning method will be used random, static and dynamic. Random method will be selection of prototype from outside system randomly with 2, 5, 10, 20 prototype each class; statis method using threshold based on grey area of fuzzy similarity characteristic with using value under 0.5, 0.4, 0.3, 0.2 and 0.1 as criteria of entering the prototype to the set prototype, while dynamic method using threshold that adaptation from (Xu Ye, 2012), but in this research will be change form of prototype from crisp to fuzzy. From all incremental learning method that used such as random, static and dynamic, accuracy increasing about 3 until 5 % from single prototype. While dynamic threshold have an average superior than random and static method in accuracy and
amount of prototype with 94.78% and ±7 prototypes on testing in simulation data using gaussian mixture models.

 File Digital: 1

Shelf
 T-Pdf Khairani Djahara.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: Fakultas Ilmu Komputer Universitas Indonesia, 2013
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 169 pages : illustration ; 28 cm
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-Pdf TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20350338
Cover