ABSTRAKPerencanaan pengembangan pembangkit listrik merupakan salah satu hal penting
yang menjadi bagian dari perencanaan sistem kelistrikan nasional selain perencanaan
kebutuhan beban. Permasalahan yang harus terjawab dalam suatu perencanaan
pengembangan pembangkit adalah bagaimana suatu investasi akan bernilai optimum
dengan berbagai kendala dan keterbatasan yang ada untuk memenuhi tingkat kehandalan
yang diinginkan.
Optimasi perencanaan pengembangan pembangkit yang digunakan dalam
penelitian ini didasarkan atas minimum pembiayaan (least cost) yang dinyatakan terhadap
nilai saat ini (present value) dengan tingkat kehandalan yang ditetapkan dan sejalan
dengan kebijakan pemerintah. Pembiayaan yang dimaksud adalah pembiayaan
pembangkit yang terdiri atas biaya modal, operasi dan pemeliharaan, serta biaya bahan
bakar. Metode penghitungan nilai optimasi yang digunakan adalah algoritma genetika,
dimana dalam penelitian sebelumnya hasil pengujian simulasi menunjukkan nilai total
pembiayaan 0,7% lebih rendah apabila dibandingkan dengan model Zopplan.
Hasil optimasi bauran kapasitas pembangkit Jawa Bali di tahun 2030 adalah
PLTU Batubara 55.492 MW (60%), PLTGU Gas (16%) 14.831 MW, PLTG LNG 10.385
MW (11%), PLT Hidro 7.196 MW (8%), dan PLTP 3.797 MW (4%). PLTU Minyak dan
PLTU Gas yang dianggap sebagai pembangkit eksisting masing-masing sebesar 407 MW
(0,4%) dan 815 MW (0,9%). Hasil optimasi bauran energi listrik dari pembangkit Jawa
Bali di tahun 2030 adalah PLTU Batubara 340.272 GWh, PLTGU Gas 54.730 GWh,
PLTG LNG 18.356 GWh, PLT Hidro 22.059 GWh, PLTP 27.762 GWh, PLTU Minyak
713 GWh dan PLTU Gas 1.429 GWh. Proyeksi emisi CO2 di tahun 2030 adalah sebesar
348,8 juta ton, sedangkan di tahun 2020 sebesar 198,2 juta ton. Proyeksi emisi CO2 di
tahun 2020 hasil optimasi Algen menunjukkan 7 juta ton lebih rendah apabila
dibandingkan terhadap proyeksi dari RUPTL.
ABSTRACTPower generation expansion planning is one of an important thing that became
part of the national electricity system planning, besides of the load forecasting. Problem
that must be answered in generation expansion planning is how an investment would be
optimum with several constraints and limitations, wether they are techno-economic factor
or energy resources.
Optimization of power generation in this study are based on least cost method
which stated in present value with a spesified level of reliability and in line with
government policy. Least cost are for capital cost, operation and maintenance cost, and
fuel cost. The measurement of optimization?s value using the genetic algorithm, which in
previous studies test results demonstrate the value of total cost is 0,7% lower when
compared to Zopplan?s model.
Optimization results for Jawa Bali generating capacity mix in 2030 was Steam
Coal Power Plant 55,492 MW (60%), Gas Combined Cycle Power Plant 14,831 MW
(16%), LNG Power Plant 10,385 MW (11%), Hydro 7196 MW (8%), and Geothermal
3,797 MW (4%). Oil and Gas Steam Power Plant power plant is considered as existing
power plants amounted to 407 MW (0.4%) and 815 MW (0.9%). Optimization results of
electrical generating energy mix for Java and Bali in 2030 was Coal Power Plant 340
272 GWh, Gas Combined Cycle Power Plant 54 730 GWh, LNG Power Plant 18,356
GWh, Hydro 22 059 GWh, Geothermal 27,762 GWh, Oil and Gas Steam Power plant
are 713 GWh and 1,429 GWh. Projected CO2 emissions in 2030 amounted to 348.8
million tons, while in 2020 amounted to 198.2 million tons. Projected CO2 emissions in
2020 based on Algen?s optimization result shows 7 million tons lower when compared to
the projection of RUPTL (General Plan Electricity of Supply in Indonesia).