Pesatnya perkembangan jumlah halaman web memotivasi banyak pihak untuk membangun suatu search engine dengan kinerja yang optimal. Proses ranking merupakan bagian penting dalam alur kerja suatu search engine. Salah satu metode alternatif machines learning yang cukup mendapatkan perhatian para peneliti adalah metode ranking SVM. Metode pembelajaran pada ranking SVM berupa model linear yang bertujuan mendapatkan fungsi ranking berdasarkan ide dasar SVM (Support Vector Machines). Studi eksperimental ini bertujuan mengukur kinerja metode ranking SVM pada data LETOR. Data LETOR merupakan data yang diorganisir oleh Microsoft yang ditujukan untuk pembelajaran ranking (leraning to rank). Hasil eksperimen menunjukkan bahwa akurasi MAP (Mean Average Precision) metode ranking SVM pada data LETOR adalah sebesar 47.38%. Hal ini menunjukkan bahwa persoalan ranking merupakan persoalan yang masih bersifat tantangan sehingga diperlukan penelitian lanjutan yang akan memberikan akurasi yang lebih tinggi.
Fast growth of web pages motivates many people to build an optimal search engine. Ranking process is an important part in the workflow of a search engine. One alternative method of machines learning which attracting more researchers? attention is a ranking SVM method. Ranking SVM has a learning system in a linear model form. Its aims to get a ranking function based on the basic idea of SVM (Support Vector Machines). This experimental study aims to measure the performance of SVM ranking methods in LETOR. LETOR benchmark dataset is organized by Microsoft. It have been released to facilitate the research on learning to rank.. The experimental results show that MAP (Mean Average Precision) accuracy of ranking SVM method on LETOR is 47.38%. This shows that the ranking is a challenging issue and required further research to provide higher accuracy.