ABSTRAKSkripsi ini berisi perancangan, pembuatan, dan analisis sistem pemantau lalu
lintas dengan teknologi computer vision menggunakan OpenCV. Sistem
memberitahukan kondisi kemacetan jalan yang dipantau dalam empat level
(lengang, ramai lancar, padat merayap, dan macet). Penelitian dilakukan
menggunakan OpenCV sebagai library pemograman bahasa C++ dengan
algoritma Canny dan Blob Detection untuk mendeteksi kendaraan menggunakan
kamera pemantau pada posisi vertikal dari samping. Berdasarkan pengujian
metode Blob Detection lebih unggul pada kondisi jalan lengang, namun ketika
kondisi semakin ramai algoritma Canny lebih unggul. Sistem mendeteksi
kendaraan yang lewat dengan rata-rata kecepatan pendeteksian 9.8 ms per frame
dengan input video berukuran 320 x 240 pixel.
ABSTRACTThis thesis describes the design, making, and analysis of traffic monitoring system
by using computer vision technology with OpenCV. These systems notify the user
about the state of the monitored road congestion in four levels (quiet, crowded,
dense crowded, and congested). The research was conducted using the OpenCV
library programming language C++ with the Canny algorithm and Blob Detection
to detect the vehicle using camera on the position of vertical side. Based from the
test results, the Blob Detection method is superior in the deserted road conditions,
but when conditions are more crowded the Canny algorithm is superior. The
system can detect vehicle with average speed of 9.8 ms per frame with video input
size 320 x 240 pixels.