Kendala utama yang menghambat aplikasi bahan bakar fuel cell pada kendaraan bermotor saat ini adalah tabung penyimpan hidrogen (on board storage). Tabung penyimpan hidrogen berfungsi untuk menampung gas hidrogen, sama halnya seperti tangki bensin pada motor konvensional. Salah satu upaya mutakhir dalam riset penyimpan hidrogen adalah dengan menyisipkan hidrogen dalam logam tertentu atau disebut solid state hydrogen storage. Magnesium (Mg) dianggap sebagai salah satu kandidat potensial material penyerap hidrogen karena, secara teoritis, memiliki kemampuan menyerap hidrogen dalam jumlah besar (7,6 wt%). Jumlah ini melebihi batas minimum yang ditargetkan Badan Energi Dunia (IEA) yakni sebesar 5 wt%. Selain itu sifat Mg yang ringan, mudah diperoleh dan harganya yang ekonomis juga menjadi pertimbangan peneliti dunia saat ini. Akan tetapi Mg memiliki kekurangan, yakni reaksi kinetiknya sangat lambat. untuk menyerap hidrogen dibutuhkan waktu minimal 60 menit. Temperatur operasinya juga sangat tinggi (300 -SiC YANG DIPREPARASI MELALUI RUTE REACTIVE MECHANICAL ALLOYING oC). Dalam perkembangannya, penggunaan material berskala nano diikuti dengan penambahan elemen lain sebagai katalis melalui proses preparasi material (mis. mechanical alloying) kini sedang aktif dilakukan. Karena itu, dalam penelitian ini dipelajari sistem penyimpan hidrogen berbasis MgH2-SiC. Material utama yakni MgH2 dipadukan dengan menyisipkan katalis karbida SiC dan direaksikan dengan gas hidrogen bertekanan rendah (0-10 bar) selama proses miling. Tujuan dari studi ini adalah untuk memperbaiki sifat-sifat serapan (absorp dan desorp) material penyimpan hydrogen berbasis MgH2. Adapun preparasi material dikerjakan melalui rute reactive mechanical alloying. Pada metode ini, penghalusan (milling) material dilakukan dalam atmosfir reaktif H2 (10 bar). Selain itu pengaruh penggunaan katalis ganda (SiC dan Ni) skala nanopartikel juga turut dipelajari. Hasilnya, material dengan komposisi MgH2-5wt%SiC-5wt%Ni memiliki sifat-sifat lebih unggul. Dalam sistem ini hidrogen yang diserap mencapai 5,7 wt%. Hasil observasi dengan DTA diketahui temperatur desorpsinya dapat direduksi hingga 250°C. Hasil ini berhasil memperbaiki Tonset MgH2 murni yang mencapai 380°C.
Hydrogen can be stored in the form of gas, as a liquid, in solid materials (metals hydrides) with different advantages and drawbacks in terms of cost, weight, stability, convenience of usage and energy density. Hydrogen storage in metal hydrides, compared t°Conventional methods, is regarded as one of the best solutions due to the higher volumetric storage capacity and safety. Magnesium and magnesiumbased alloys are promising candidates for hydrogen storage because of their high discharge capacity and low specific gravity, they are naturally abundant and produce relatively low costs in fabrication and in the acquisition of raw materials. The hydrogen storage capacity of magnesium in the form of MgH2 amounts to 7.6 wt.%. Unfortunately, MgH2 has a high thermodynamic stability and therefore, relatively slow desorption kinetics, which are the major drawbacks for the application as a hydrogen storage material. Various techniques are developed to improve the sorption characteristics by accelerating the aforesaid processes. In this work we success to synthesis and investigate the catalytic effect of SiC and Ni (in nanostructure scale) on MgH2 using reactive mechanical alloying method in 10 bar H2. At first step, using SiC catalyst the sorption properties can be improved. The most promising step by using SiC and Ni (MgH2-5wt%SiC-5wt%Ni) which could absorp 5.7 wt% hydrogen and at the same time decrease the desorption temperature to 250°C. Compared to T onset of pure MgH2 -which desorp at 380°C- this results is very promising for MgH2-SiC system.