https://access.unram.ac.id/wp-content/

UI - Skripsi Open :: Kembali

UI - Skripsi Open :: Kembali

Sistem pengenalan wajah (face recognation) menggunakan metode hidden markov model (hmm)

Sepritahara; Dodi Sudiana, supervisor (Fakultas Teknik Universitas Indonesia, 2012)

 Abstrak

Sistem pengenalan wajah manusia merupakan salah satu bidang yang cukup berkembang dewasa ini, dimana aplikasi dapat diterapkan dalam bidang keamanan (security system) seperti ijin akses masuk ruangan, pengawasan lokasi (surveillance), maupun pencarian identitas individu pada database kepolisian. Tujuan Penulisan laporan tugas akhir ini adalah untuk membangun sebuah perangkat lunak pengenalan citra wajah manusia menggunakan metode Hidden
Markov Models (HMM) dengan input database Pain Ekspression Subset dan database Hasil Foto Sendiri dengan memanfaatkan aplikasi GUI. Hasil pengujian sistem menunjukkan bahwa sistem pengenalan wajah (face recognition) membandingkan percobaan pengenalan sesuai dengan codebook (32, 64,128, 256) dan iterasi (5, 10). Sistem pengenalan wajah manusia menggunakan metode Hidden Markov Models (HMM) mencapai tingkat akurasi pengenalan sebesar
84,28%, dengan database 70 gambar yang terdiri dari 10 individu dengan masing-masing individu memiliki 7 variasi ekspresi yang berbeda.

ABSTRACT
Human face recognition system is one area that is developing now, where applications can be applied in the field of security (security system) such as permit access into the room, monitoring locations (surveillance), or search for individual identity in the police database. Purpose of this final report is to build a software image of human face recognition using Hidden Markov Models method (HMM) with input Pain Ekspression Subset database and Image itself database applications of GUI. Test results show that the system of face recognition systems
trial comparing the introduction according to the codebook (32, 64.128, 256) and iteration (5, 10). Human face recognition system using Hidden Markov Models (HMM) reached the level of recognition accuracy of 84,28%, with 70 database that consists of 10 individuals with each individual has 7 variations of expressions.

 File Digital: 1

 Metadata

Jenis Koleksi : UI - Skripsi Open
No. Panggil : S1373
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2012
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : volume
Deskripsi Fisik : xiii, 67 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S1373 14-24-68295644 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20291949
Cover