Reduksi elektrokimia gas CO2 dengan menggunakan elektroda Cu pada larutan elektrolit anorganik NaHCO3 dan buffer fosfat telah dilakukan. Metode elektrolisis arus tetap dilakukan pada 36mA dengan rentang potensial berkisar dari -6 V sampai -10 V. Produk yang dihasilkan dianalisis dengan menggunakan GC-TCD dan GC-FID setelah elektrolisis selama 30 menit. CH4(g) dan C2H5OH(l) dihasilkan pada percobaan kali ini. Distribusi produk reduksi gas CO2 bergantung pada komposisi dan konsentrasi larutan elektrolit yang digunakan dimana CH4(g) cenderung terbentuk pada NaHCO3 pekat sedangkan C2H5OH(l) cenderung terbentuk pada NaHCO3 encer. Selektivitas produk juga dipengaruhi oleh ketersediaan hidrogen atau proton pada permukaan elektroda yang dikontrol oleh pH dekat elektroda. Pada pH asam, reduksi H+ (Hydrogen Evolution) lebih dominan terjadi pada permukaan elektroda sedangkan pada pH basa sumber hidrogen untuk reduksi gas CO2 cenderung terbatas. pH optimum untuk reduksi gas CO2 adalah pH 7. Efisiensi faraday tertinggi pada reduksi CO2 ini adalah 48.94 % dimana efisiensi faraday ini sangat dipengaruhi oleh preparasi larutan elektrolit, elektroda dan juga transfer masa.
Electrochemical reduction of CO2(g) at Cu electrode in aqueous inorganic electrolytes (NaHCO3 and phosphate buffer) was studied. Constant current electrolysis were conducted at 36 mA with potential range from -6 V to -10 V. The electrolysis products were analysed by GC-TCD and GC-FID after 30 minutes electrolysis. CH4(g) and EtOH(l) were produced at ambient temperatures. The product distribution from CO2(g) depended strongly on the composition and concentration of electrolytes employed. The formation of CH4(g) was favoured in concentrated NaHCO3 whereas EtOH(l) is preferentially produced in dilute NaHCO3. The product selectivity depended on the availability of hydrogen or proton on the surface, which is controlled by pH at electrode. In acidic solution, the reduction of H+ (Hydrogen evolution) preferentially occurred whereas in basic solution, hydrogen availability is limited. The optimum condition for CO2(g) reduction is at pH 7. The highest Faradaic efficiency of CO2(g) reduction in this measurement was 49.6%. Faradaic efficiency was greatly affected by the preparation of electrolyte, the kind of electrodes and the mass transport.