Model-model Persamaan Diferensial Stokastik (PDS) memiliki peranan yang sangat penting di berbagai bidang industri, misalnya ekonomi, keuangan, biologi, kimia, epidemiologi, juga mikroelektronik (Higham D. J., 2001). Metode numerik seringkali digunakan untuk mengaproksimasi solusi dari suatu model PDS, sehingga dibutuhkan suatu proses komputasi untuk memperoleh solusi dari suatu model PDS tersebut. Model-model PDS biasanya melibatkan data dalam jumlah besar ataupun proses komputasi yang banyak, sehingga berdampak pada waktu komputasi yang semakin lama. Untuk mempercepat waktu komputasi, maka diterapkan komputasi paralel. Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer/prosesor pada suatu waktu tertentu.
Dalam skripsi ini diberikan algoritma paralel untuk mengaproksimasi solusi dari suatu model PDS. Algoritma-algoritma ini diimplementasikan dalam program yang dijalankan pada mesin multicore dengan MATLAB dan Parallel Computing Toolbox (versi trial). Diberikan juga kinerja algoritma paralel yang diukur dengan speed up dan efisiensi paralel.
Stochastic Differential Equations (SDEs) models play a prominent role in a range of application areas, including biology, chemistry, epidemiology, mechanics, microelectronics, economics, and finance (Higham D. J., 2001). Numerical method is usually used to get an approximate solution of SDEs models which often involve huge data or many computation steps, hence need more computation time. Parallel computing is an alternative that can reduce the computation time.This skripsi discuss some parallel techniques to solve SDEs problems especially in finance models. The parallel techniques is designed to utilize several processors simultaneously. In this case the algorithms run on multicore machine with MATLAB and Parallel Computing Toolbox (trial version). Parallel perfomance of the algorithms are also given which compared the speed up and efficiency of several parallel techniques.