Produksi masif sel bahan bakar membran polimer (PEMFC) dibatasi oleh harga material yang tinggi serta proses manufaktur yang rumit. Dalam penelitian ini, nanokomposit berbasis polipropilena (PP) dibuat dengan pengisi tembaga nanopartikel (CuNP) dan grafit (G). Tiga jenis nanokomposit, disebut PP/CuNP, CuNP/PP, dan CuNP/PP/G, difabrikasi dengan metode pencampuran kimiawibasah dan fasa-padat. Kemungkinan penggunaan sampel-sampel sebagai material pelat bipolar diinvestigasi dalam penelitian ini. Hasil-hasil yang diperoleh menunjukkan bahwa kedua jenis pengisi mempengaruhi sifat optis, kelistrikan, dan mekanis dari nanokomposit. Seluruh PP/CuNP, dengan kandungan pengisi tunggal yang tidak dominan, didapati bersifat insulator dengan nilai energi celah pita (Eg) berkisar antara 5,93 - 4,26 eV dan nilai konduktivitas listrik (σ) yang sangat kecil (~0 S/cm). Sementara itu, pada CuNP/PP yang fraksi berat pengisi tunggalnya dominan, didapati seluruhnya bersifat semikonduktor dengan nilai Eg dan σ berada pada kisaran 2,24 - 2,34 eV dan 0,13 - 3,38 S/cm. Pada tahapan berikutnya, pengamatan pada nanokomposit hibrida CuNP/PP/G menunjukkan bahwa sebagian nanokomposit bersifat insulator sedangkan yang lainnya bersifat semikonduktor, dengan nilai Eg dan σ berada pada kisaran 1,77 - 11,70 eV dan 0,0005 - 2,65 S/cm.
The massive production of polymer electrolyte fuel cell (PEMFC) is restricted due to high material cost and complicated manufacturing process. In current research, the polypropylene (PP) based composites has been prepared with copper nanoparticle (CuNP) and graphite (G) as the fillers. Three types of nanocomposites, called PP/CuNP, CuNP/PP, and CuNP/PP/G, were fabricated by both chemical and solid-state mixing methods. The possibilities for bipolar plate material was investigated. The results show that both fillers affected the optical, electrical, and mechanical properties of the nanocomposites. All of PP/CuNPs, which fillers inside were not dominant, were observed as insulators with band gap energy values were in the range of 4.26 - 5.93 eV and very small electrical conductivities (σ = ~0 S/cm). On the contrary, all of CuNP/PPs, which had dominant filler phases, were observed as semiconductors with Eg and σ were in the ranges of 2.24 - 2.34 eV and 0.13 - 3.38 S/cm, respectively. Furthermore, for the CuNP/PP/Gs hybrid nanocomposites, it is found that some of CuNP/PP/Gs were insulators while others were semiconductors with Eg and σ were in the ranges of 1,77 - 11,70 eV and 0.00005 - 2.65 S/cm.