Dinitrogen Monoksida (N2O) merupakan emisi dari proses industri dan kegiatan pertanian. Gas tersebut merupakan gas polutan berbahaya dan menyebabkan masalah lingkungan yang serius seperti pemanasan global. Sebelumnya, teknologi kontrol tradisional seperti selective catalytic reduction (SCR) dan selective non-catalytic reduction (SNCR) digunakan untuk mengontrol emisi N2O pada kegiatan-kegiatan industri. Akan tetapi, kedua proses ini membutuhkan suhu yang tinggi dan penggunaan katalis. Selain itu, proses ini membutuhkan biaya instalasi dan operasi yang tinggi, serta menghasilkan produk buangan dalam jumlah cukup besar sehingga mengharuskan pemilik pabrik untuk membayar biaya pembersihan dan pembuangan. Adanya masalah dari segi ekonomi dan teknis memotivasi peneliti untuk mengembangkan teknologi baru yang lebih murah dan efisien untuk menghilangkan N2O dari gas buangan. Pengolahan N2O secara biologis adalah salah satu alternatif yang digunakan dalam penghilangan sampah industri dan ramah lingkungan. Sistem pengolahan biologis bisa beroperasi pada suhu ambien dengan menggunakan inokula mikroba yang murah. Pada skripsi ini, penulis akan menyelidiki pengaruh parameter operasional seperti panjang kolom, laju alir terhadap efisiensi penghilangan N2O. Biofilter yang digunakan dalam penelitian ini merupakan peralatan dalam skala kecil. Sumber gas N2O yang berasal dari tabung gas N2O dalam udara yang dilewatkan ke dalam kolom biofilter dengan panjang 50 cm dan diresirkulasi dengan pompa peristaltik. Kolom biofilter tersebut berisi media filter berupa pupuk kompos dengan panjang tertentu. Proses resirkulasi gas beroperasi selama 6 jam dalam satu hari yang kemudian akan dianalisa konsentrasinya pada setiap jam. Analisa konsentrasi gas dilakukan dengan menggunakan kromatografi gas jenis TCD. Hasil dari analisa gas tersebut kemudian akan dilaporkan dalam skripsi ini sesuai dengan parameter operasional yang dipilih sebelumnya. Hasil penelitian menunjukkan bahwa reduksi gas N2O yang terbaik didapatkan pada panjang kolom biofilter dan laju alir gas N2O tertinggi yakni pada 50 cm dan 200 cc/menit dengan hasil pengurangan sebesar 70.22%. Nilai efisiensi reduksi ini telah diteliti dengan memvariasikan panjang biofilter setinggi 10, 15, 25, 45, dan 50 cm. Hasil terbaik pada variasi panjang biofilter kemudian divariasikan pada laju alir 25, 32.14, 50, 100, 200 cc/menit. Hasil penelitian juga menunjukkan bahwa efisiensi reduksi gas N2O dapat dioptimalkan dengan penambahan nutrisi pada panjang kolom dan laju alir gas N2O terbaik sehingga efisiensi reduksi gas N2O mencapai 91.49%. Penelitian dapat dimodelkan dalam adsorpsi isotermis Langmuir. K Langmuir yang didapatkan pada penelitian ini adalah 16.006 liter/mol.
Nitrous oxide (N2O) is mostly emitted from various industrial processes and agricultural activities. This gas causes serious environmental problems such as global warming and is considered as a dangerous pollutant. In the past, traditional control technologies, such as selective catalytic reduction (SCR) and selective non catalytic reduction (SNCR), were applied to control N2O emissions in some industries. However, these two processes required high temperatures and the use of catalysts, involving high installation and operation costs as well as generating a large quantity of secondary waste. Economic and technical constraints in SCR and SNCR methods motivated researchers to develop new, cost-effective processes to remove N2O. Biofiltration is an emerging technology that offers a number of advantages over traditional methods of air pollution control. Besides of its highly efficient removal of pollutants and low operating cost, it does not generate undesirable byproducts and it degrades many organic and inorganic compund into harmless oxidation products. In this paper, effects of operational parameters such as column length, gas flow rate, and usage of nutrition towards N2O reduction efficiency will be observed. The biofilter used in this research is a laboratory scaled instrument. The N2O gas is fed from the top of the column under the length of 50 cm and is recirculated using peristaltic pump for 6 hours a day. The packing material used in this research is compost from cow manure and is filled under a certain column height. The N2O concentration in the off-gas is monitored using GC TCD (Gas Chromatography Thermal Conductivity Detector), which was pre-adjusted and calibrated before the experiments were conducted. The result from the gas analysis detected by GC will be further reported in this paper accordingly with the operational parameters chosen before. The result of this research shows that the highest N2O gas reduction efficiency is obtained at the highest biofilter length and N2O gas flowrate, under biofilter length= 50 cm and gas flow rate = 200 cc/min conditions, 70.22% of removal efficiency was achieved. This is observed by varying biofilter lengthset at 10, 15, 25, 45, and 50 cm. The highest removal efficiency from this variation will further served as a baseline for gas flow rate variation set at 25, 32.14, 50, 100, 200 cc/min. The result also shows that N2O gas removal efficiency could be optimized by adding nutritional supplement, hence 91.49% of removal efficiency was achieved under the highest biofilter length and N2O gas flowrate. This research can be modelled into Langmuir adsorption isotherm formula whereas the K obtained in this research is 16.006 liter/mol.