Penyakit pada jantung merupakan salah satu penyebab kematian pada manusia di seluruh dunia. Salah satunya merupakan serangan jantung yang disebabkan adanya kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini merancang sistem pengenalan penyakit jantung dengan menggunakan metode Jaringan Syaraf Tiruan. Jaringan Syaraf Tiruan (JST) adalah suatu metode komputasi untuk memodelkan suatu sistem. Bentuk dan sifat JST yang sangat flexible memungkinkan JST digunakan untuk memodelkan, merancang dan menganalisis pengenalan penyakit jantung. Metode yang digunakan adalah backpropagation yang terdiri atas lapisan masukan, lapisan tersembunyi dan lapisan keluaran. Pada penelitian ini analisis yang dilakukan adalah training data dengan fungsi gradient (traingd) serta menggunakan fungsi aktivasi purelin. Hasil dari pengujian kelainan jantung yang diperoleh akurasi rata-ratanya sebesar 82,22 %.
Heart disease is one of dead effect of human being in the world. One of them is heart attack which is cause by valve heart disease which can be detected by murmur sound of heartbeat patients. This Final Project is design of heart disease recognition system using Neural Network method. Neural Network is a computing method for modeling the system. Neural Network configuration and characteristic is very flexible enable which used for modeling, design dan analysing heart disease recognition. The methods which used is backpropagation which consist of input layer, hidden layer and output layer. In this research the analysis that has been done is file training with gradient function (traingd) and using purelin activation function. The result from testing heart disease is obtained average accuracy about 82,22 %.