Ekstraksi fitur merupakan tahap penting dalam pengenalan objek. Fitur yang dihasilkan dalam tahapan ini akan sangat menentukan ke-akuratan suatu objek ketika dikenali. Scale Invariant Feature Transform (SIFT) merupakan suatu metode yang memberikan fitur-fitur khas dan invarian terhadap berbagai jenis perubahan pada citra. Pada skripsi ini akan dibahas tentang SIFT sebagai metode ekstraksi fitur pada pengenalan objek. Selain itu juga akan dilakukan perancangan simulasi untuk menguji kinerja dan performansi SIFT jika digunakan pada pengenalan jenis kendaraan. Performa dari SIFT ini akan diukur dari grafik recall vs. 1-precision yang dihasilkan dan lamanya waktu proses.
Feature Extraction is an important stage in object recognition. The features generated in this stage will determine the accuracy of object recognition. Scale Invariant Feature Transform (SIFT) is a method which generate a unique features and invariant against various changes in the image. This thesis will discuss about SIFT as a feature extraction method in object recognition. Also a simulation will be design to test the performance of SIFT if used in a vehicle type recognition. The performance of SIFT can be measured from the graph of recall vs. 1-precision and the processing time.