Skripsi ini bertujuan untuk mengoptimalkan korelasi antara Transformasi Paket Wavelet dan jaringan Syaraf Tiruan topologi propagasi-balik umpan-maju dengan menggunakan pendekatan tingkah laku manusia dalam memahami obyek yang diamati. Tingkah laku ini dapat bersifat obyektif maupun subyektif tergantung dari keadaan dan tujuan pengamatan tersebut. Parameter obyektif menggunakan seluruh ciri sebagai dasar dalam melakukan klasiflkasi, sedangkan parsmeter subjektif hanya memanfaatkan ciri-ciri yang sesuai untuk memenuhi klasifikasi.
Hasil pengujian yang dilakukan menunjukkan bahwa tingkat keakuratan berkisar antara 92,861% - 97,86% jika digunakan untuk mengklasifikasikan obyek bidang datar. Sedangkan untuk tekstur antara 94,37% - 98,444%. Kemampuan perangkat lunak untuk mengenal obyek yang mengalami gangguan, yaitu maksimum sebesar 96% pada obyek yang tertranslasi, 90% pada obyek terrotasi, dan 92% pada obyek yang mengalami noise. Selain dari pada itu, kecepatan pembelajaran menjadi sangat singkat dengan rata-rata iterasi maksimal sebanyak 9134,8 kali dan waktu rata-rata kurang dari 261,726 detik.
Pengujian keseluruhan memberikan kesimpulan bahwa penambahan informasi-informasi tertentu yang berkaitan dengan ciri-ciri obyek, akan membantu dalam menghasilkan pembelajaran yang optimal dan pendeteksian yang maksimal.