Ada banyak attributattribut yang dapat diekstrak dari data seismik dan pemilihan attribut yang hanya dapat mempengaruhi distribusi litologi ini secara dominan bukan merupakan hal yang mudah karena pada kenyataannya beberapa attribut tidak memberikan kontribusi dalam pengelompokan litologi. Untuk mengurangi hal itu, penulis menggunakan Principal Component Analysis (PCA) pada data seismik dan generalized principal component analysis (GPCA) pada attribut seismik. Analisis GPCA terdiri dari dua langkah: Pertama, meningkatkan variasi data dengan menggunakan principal component analysis sehingga pemisahan data yang lebih baik bisa didapatkan, dan kedua, memilih attribut yang telah terotasi berdasarkan urutan nilai eigen valuenya yang dihitung sebelumnya. Tujuan analisis PCA adalah untuk menghilangkan komponen bising yang bersifat acak yang terdapat di dalam data seismik sedangkan tujuan analisis GPCA adalah untuk menghasilkan atribut seismik yang mampu memberikan kontribusi untuk clustering.
Cluster analisis dari attribut seismik merupakan suatu metode yang digunakan untuk mengelompokkan litologi dari data seismic yang telah direkam dan diproses. Secara prinsip, cluster analisis memproyeksikan N attribut seismik ke sistem koordinat dengan N-dimensi yang menghasilkan K cluster yang merepresentasikan litologi yang berbeda. Penentuan pusat awan data (centroid) dapat dilakukan melalui proses yang iteratif (unsupervised). Algoritma clustering yang dipakai adalah Kmeans clustering. Hasil clustering yang didapat menunjukkan konsistensi dengan peta litologi yang sudah ada yang di intrepetasi dari korelasi data sumur.
There are a lot of seismic attributes that can be generated from seismic data and choosing attributes that mainly affect the distribution of the lithology clouds is not a simple task to do due to the fact that some attributes may not contribute to the separation of the clusters. To reduce that difficulty, the authors implemented a principal component analysis (PCA) of seismic data and a generalized principal components analysis (GPCA) of seismic attributes. This GPCA analyisis consists of two steps : First, increasing the variation of data points using the principal component method such that better cluster separation can be obtained, and second, selecting contributing rotated attributes based on the rank of previously calculated eigen values. The aim of PCA analysis is to reduce noise effect which random in seismic data while the aim of GPCA analysis is to result seismic attributes which give contribution to clustering.
Cluster analysis of seismic attributes is a tool to classify lithologies brought by recorded and processed seismic data. In principal, cluster analysis projects N seismic attributes into Ndimension coordinate system resulting with K groups of clouds representing different lithologies. Identification of the center of the clouds and its related samples can be done differently by iterative process (unsupervised). Clustering algorithm is Kmeans clustering. The results of clustering show consistency with existing lithology map interpreted from well correlation.